国際的な津波リスク評価 -これまでの研究と今後の課題-

サッパシー アナワット

東北大学 災害科学国際研究所 寄附研究部門 地震津波リスク研究部門(東京海上日動)

第6回 IRIDeS 金曜フォーラム 2012年11月30日

研究部門の紹介 寄附研究部門 地震津波リスク研究部門(東京海上日動)

地震津波リスク研究部門(東京海上日動) 2012年4月、東京海上日動火災保険株式会社の 寄附を受けて、東北大学災害科学国際研究所 (IRIDeS)内に「地震・津波リスク研究分野」 が開設されました。当研究部門では、東日本大 震災の被害実態やこれまでの巨大地震における 津波(波高分布や到達時間)を評価し、国内外 における社会での脆弱性や防災力を考慮した被 害推定や発生確率を加えた津波リスクの評価手 法を研究します。また防災・減災に関するセミ ナー開催や防災教育ツールの開発等を通じて、 得られた知見を広く社会に提供していきます。

		メンバー	
今村	文彦		教授
サッパ	パシー・	アナワット	准教授
安倍	祥		助手
福谷	陽		助手
保田	直理		助手

目的

地震津波リスクに関する研究を展開するため、国内外 での地震による津波の評価(波高分布や到達時間)を ベースに、社会での脆弱性や防災力を考慮した被害を 推定し、さらには、発生確率を加えた総合的なリスク の評価手法について検討を行います。

研究活動と内容

- ▶ 地震津波リスクについて共同で研究を実施
- ▶ 国内外での津波リスクデータの収集と整理
- 東日本大震災での被害実態と復興関係の情報収集と 整理
- ▶ 各種シンポジウム・啓発活動の実施

Self Introduction

Birth place: Bangkok, Thailand (29)

Education background

- 2001 2005 B. Eng. (Civil Eng.) Chulalongkorn University
- 2005 2007 M. Eng. (Water Eng.) Asian Institute of Technology (AIT)
- 2007 2010 Ph. D. (Tsunami Eng.) Tohoku University

Working experience

- 2010 2012 Research Fellow, Willis Research Network (WRN)
- 2012 present Associate Professor, IRIDeS, Tohoku university

Experienced two great disasters

The Great East Japan tsunami in March 2011 and The Great Thailand flood in October 2011

International collaboration: Tsunami survey guidance

Date	Organization	Location
3 October 2012	Profs from UK universities and UK Embassy in Japan	Onagawa, Ishinomaki and Sendai
21 September 2012	APRU Symposium participants	Onagawa, Ishinomaki and Sendai
23 August 2012	Ken Kornberg	Sendai area
23 August 2012	AIT Extensions (Disaster prevention training course)	Sendai area
25 July 2012	JICA training-Integrated disaster prevention in central Asia-Caucasus	Sendai area
2 July 2012	Thailand's Minister of Information and Communication Technology	Sendai area
19 June 2012	Dr. Ingrid Charvet, UCL, the Royal Thai Embassy in Tokyo and Thai TV 9 channel	Sendai area
10 May 2012	Dr. Carl Harbitz (Norwegian Geotechnical Institute (NGI)	Sendai area
26 March 2012	Thai Flood experts	Onagawa, Ishinomaki and Sendai
16 March 2012	SATREPS (JST-JICA) tsunami project	Onagawa, Ishinomaki and Sendai
12 March 2012	Dr. Nick Wigginton (Science Editor)	Sendai
25 January 2012	Dr. Brain E. Tucker (GeoHazards International)	Sendai area
22 January 2012	KIP (Knowledge Investment Programs)	Sendai area
18 January 2012	Prof. Emile Okal (Northwestern University)	Sendai area
15 January 2012	Prof. Perwitt (University of Arizona) and Prof. Kirby (USGS)	Sendai area
21 November 2011	Prof. Iwata Shuichi (University of Tokyo)	Sendai area
9 November 2011	WRN	Miyako to Kuji
2 November 2011	JST National Innovation Coordinator Forum in Sendai	Ishinomaki city and Sendai city
22 October 2011	Dr. Veronica Cedillos (GeoHazards International)	Sendai area
19 October 2011	Alfred P. Sloan Foundation and Census of marine life	Sendai area
28-29 September 2011	Dr. James D. Goltz (California Emergency Management Agency) and Dr. Iuchi Kanako (The world bank)	Sendai area and Onagawa
7 September 2011	WRN	Onagawa to Watari
2-3 September 2011	Swiss Re	Minami-Sanriku to Sendai airport
25 July 2011	World Bank (GFDRR)-JICA	Ishinomaki to Sendai Port
30 May – 2 June 2011	Prof. Ahmet Yalciner team	Taro to Kesennuma
29 May 2011	JST-JICA and RISTEK Indonesia	Sendai airport to Sendai port 4

Visited University College London (UCL)

Key person

Dr. Tiziana Rossetto, Director (Earthquake Engineering) Dr. Ian Eames (Civil Engineering) Dr. Ingrid Charvet (Civil Engineering) Dr. Tristan Robinson (Mathematics) Dr. Ioanna Loannou (Earthquake Engineering) Dr. Anna Mason (Earthquake Engineering)

EPICentre (Earthquake and People Interaction Centre) http://www.epicentreonline.com/

Key person

Prof. Peter Sammonds, Director (Earth Science) Dr. Rosanna Smith, Deputy Director (Earth Science)

Prof. David Alexander (Disaster Science) Dr. Serge Guillas (Statistical Science) Dr. Simon Day (Earth Science) Dr. Joanna Faure Walker (Earth Science)

IRDR (Institute for Disaster Risk Reduction) <u>http://www.ucl.ac.uk/rdr/</u>

The Leverhulme Trust – International network grant http://www.leverhulme.ac.uk/

Quantification of uncertainties in tsunami models from sources to impacts

University College Dublin (Ireland), GNS Science (New Zealand), Durham University (UK), Tohoku University (Japan), University of New Mexico (USA) and University College London (UK)

Tsunami Generation

Tsunami Propagation

Tsunami Inundation (Human and Building)

Tsunamigenic ratio in the Pacific Ocean Earthquake events and tsunamigenic zone in the Pacific Ocean

The Pacific Ocean is geographically divided into 9 regions namely, New Zealand–Tonga (NZT), New Guinea–Solomon (NGS), Indonesia (IND), Philippines (PHI), Japan (JAP), Kuril–Kamchatka (K–K), Alaska–Aleutians (A–A), Central America (CAM) and South America (SAM).

Tsunamigenic ratio for each region

Suppasri, A., Imamura, F. and Koshimura, S. (2012) Tsunamigenic Ratio of the Pacific Ocean Earthquakes and a proposal for a Tsunami Index, *Natural Hazards and Earth System Sciences*, *12(1)*, *175*–185

Earthquake magnitude

Great earthquake magnitude \rightarrow high possibility of tsunami occurrence (Generally > 7.0)

✤ Focal depth

Shallow focal depth \rightarrow high possibility of tsunami occurrence (Generally < 100 km)

✤ Sea depth

Deep sea depth \rightarrow high possibility of tsunami occurrence (Generally > 1,000 m)

Tsunami Generation

Tsunami Propagation

Tsunami Inundation (Human and Building)

Effect of fault rupture velocity on tsunami propagation

Examples of the 2004 Indian Ocean tsunami

- DCRC (2007): Static model
- Hirata (2006) : Dynamic model, Vr = 0.7 km/s
- Fujii (2007) : Dynamic model, Vr = 1.0 km/s
- Tanioka (2006) : Dynamic model, Vr = 1.7 km/s
- Piatanesi (2007) : Dynamic model, Vr = 2.0 km/s

<u>Suppasri, A.</u>, Imamura, F. and Koshimura, S. (2010) Effect of the rupture velocity of fault motion, ocean current and initial sea level on the transoceanic propagation of tsunami, *Coastal Engineering Journal*, 52(2), 107–132

Effect of fault rupture velocity on tsunami propagation

Numerical experiment: Effect on tsunami amplitude and arrival time

Location for output calculation

Tsunami Generation

Tsunami Propagation

Tsunami Inundation (Human and Building)

Tsunami hazard map for different recurrence

Tsunami hazard map from earthquake M = 9.0

M = 9.0 Combined hazard map For one recurrence (Magnitude)

Indian Ocean tsunami hazard map for M=9.0

Risk assessment for coastal population

Tsunami risk map for M_w 9.0 earthquake

Rough estimation of number of casualty

Tsunami Generation

Tsunami Propagation

Tsunami Inundation (Human and Building)

Criteria for structural destruction by tsunami

Tsunami event	Location	Frame	Damage description as a function of inundation depth
Multiple events	Various	Wood	< 1.5 m: moderate damage
Shute 1002 and			< 2.0 m: severe damage
[Shuto, 1995 and Mateutomi and Harada, 2010]		Concrete block	< 3.0 m: moderate damage
Matsutomi and Harada, 2010]		RC	< 7.0 m: severe damage
	South Java, Indonesia	Wood/bamboo	< 1 m: light to moderate damage
			1.5 - 2.0 m: 70% destroyed, 30% lightly to heavily damaged but
			repairable
			> 2 m: total destruction
		Brick traditional	< 1 m: light to moderate damage
			1.5 - 2.0 m: 70% destroyed, 30% lightly to heavily damaged but
2006 Java tsunami			repairable
[Reese et al., 2007]			> 2 m: some houses remained but not repairable
		Brick with RC column	< 1 m: minor damage only
			1.5 - 2.0 m: light to moderate damage (repairable)
			3.0 - 4.0 m: serious damage but probably repairable
		RC with brick wall	< 1 m: zero to light damage
			1.5 - 2.0 m: light to moderate damage (repairable)
			3.0 - 4.0 m: moderate damage but repairable
	Southern Thailand	Wood	< 1.5 m: no damage up to damage to secondary members only
			< 2.5 m: damage to some primary members up to collapse
2004 Indian Ocean tsunami			> 3 m: collapse
[Ruangrassamee et al. 2006 and		RC with brick wall	< 1.0 m: no damage
Suppost et al. 2011]			1.0 - 2.0 m: no damage up to damage to secondary members only
Suppositer al., 2011]			2.0 - 3.0 m: damage to secondary up to some primary members
			> 3.0 m: damage to some primary members up to collapse
			> 7.0 m: collapse
	Miyagi prefecture, Japan	Wood	> 2.5 m: minor damage
2011 East Japan tsunami [Suppasri et al, 2012]			> 3.0 m: moderate damage
			> 4.0 m: major damage
			> 4.5 m: completely damage 20

Level 1: Roof and wall

Level 2: Beam and column

Level 3: foundation

Developing fragility curves Field survey VS Simulation + Satellite image

Only inundation depth Multi damage level Small area but high accuracy Include velocity, force Only for washed away Large area but accuracy?

Global tsunami fragility curves

Tsunami fragility curves based on the 2011 tsunami data

Moderate damage

Major damage

Complete damage

Great East Japan tsunami in Sendai and Ishinomaki Plains, Coastal

Engineering Journal, 54(1), 1250008

curves of the 2011 Great East Japan tsunami, *Natural Hazards*, (published online)

24

Problems to be solved in the future

Tsunami generation: Need to consider more on earthquake fault parameter such as dip, rake and slip and apply more statistical parameters

Tsunami propagation: Need to apply a Probabilistic Tsunami Hazard Analysis (PTHA)

Tsunami inundation

Impact to human: Need to further discuss on human behavior effect and applying tsunami evacuation model based on results from questionnaire surveys

Impact to building: Need to consider more on impact from different coastal topography, building function, construction year, surrounding environment and floating debris

Evacuation model applied to Thailand (Erick and Suppasri et al, 2012)

25

