組織・メンバー

災害評価・低減研究部門
災害ジオインフォマティクス研究分野
助教
VESCOVO Ruben
べすこぼ るべん

関連サイト
主な業績

Vescovo, R., Adriano, B., Wiguna, S., Ho, C. Y., Morales, J., Dong, X., Ishii, S., Wako, K., Ezaki, Y., Mizutani, A., Mas, E., Tanaka, S., and Koshimura, S.: The 2024 Noto Peninsula earthquake building damage dataset: Multi-source visual assessment, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-363, in review, 2025.

Vescovo, R., Mas, E., Adriano, B., Koshimura, S. (2023): Deep learning of tsunami building damage from multimodal physical parameters for real-time damage assessment, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-2256

Vescovo, R., Adriano, B., Mas, E. et al. Beyond tsunami fragility functions: experimental assessment for building damage estimation. Sci Rep 13, 14337 (2023). https://doi.org/10.1038/s41598-023-41047-y

S. Wiguna, B. Adriano, E. Mas and S. Koshimura, "Evaluation of deep learning models for building damage mapping in emergency response settings", IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 17, pp. 5651-5667, 2024.